DA BG3.png

Data Science

10 months | Flexible 25h per week 

An immersive online course that provides you the tools and training you need to become the best you can be in any of the following professions:


​+ Data Scientist

+ Data Analyst

+ Machine Learning Engineer

+ Business Analyst

+ Product Analyst

+ IT Systems Analyst

+ Data Analytics Consultant

+ Marketing Analyst

The next Data Science cohorts: June 2022


Data science is a complex field: it entails the structuring and analysis of large volumes of data, the application of machine learning to make predictions, the identification of patterns, and the ability to draw conclusions. Data scientists are sought after in business, manufacturing and science. They work with essential tools such as Python and its libraries, including Scikit-Learn and XGBoost, Jupyter Notebook, and SQL. Our mission is to teach you how to use these tools.

Free introductory course 

Pre-course: Python and data analysis basics 

The process and stages of the data scientist’s work — essential terms, methods, and tools of data analysis. Data preparation. Python programming language and its Pandas library. Jupyter development environment.

Onboarding day

Learning what it means to be a data scientist. An overview of spheres where data scientists can find work. Organisational aspects of the training process.

Data Preprocessing 40-50h

Compensating for less-than-perfect data. Handling missing and duplicate values. Changing data types. Systems thinking for analysts.

Exploratory Data Analysis 40-50h

Performing initial scans to detect patterns in data. Building basic graphs and generating your first hypotheses.

Statistical Data Analysis 40-60h

Probability theory, the most common distributions, and statistical methods in Python. Sampling and statistical significance. Identifying and handling anomalies.

Integrated Project 1 20h

Identify patterns to help you determine whether a given video game will succeed or not.

Data Collection and Storage (SQL) 40h-60h

How databases are organized and how to pull data from them using SQL queries. Finding data online.

Analysis of Business Indicators  40-50h

Even closer to business, we take a detailed look at metrics and essential tools like cohort analysis, sales funnels, and unit economics.

Making Data-Informed Business Decisions 40-50h

A/B testing: when to use it. Designing and identifying the sample size. Getting and validating results.

How to Tell a Story Using Data 40h

How to correctly present research results using graphics, key numbers, and solid interpretation.

Introduction to Machine Learning 40h

Mastering the basics of machine learning. How the scikit-learn library works and how to use it in order to complete your very first machine learning project.

Supervised Learning 40h

Diving into the most highly demanded area of machine learning. Understanding how to tune machine learning models, improve metrics, and work with imbalanced data.

Machine Learning for Business 40h

Applying the acquired machine learning knowledge to business tasks. Discover business metrics, A/B testing, the Bootstrapping technique, and data labelling.

Integrated Project 2 20h

Prepare a prototype of a machine learning model to help the company develop efficiency solutions for heavy industry.


Linear Algebra 40h

Taking a more in-depth look at some algorithms you’ve already learned and understanding how to apply them. Get a hands-on feel for the main concepts behind linear algebra: vectors, matrices, and linear regression.

Numerical Methods 20h

Pulling apart a number of algorithms that use numerical methods and applying them to practical tasks. Learning about gradient descent, gradient boosting, and neural networks.

Time Series 40h

Exploring the time series. Understanding trends, seasonality, and feature creation.

Machine Learning for Texts 40h

Applying machine learning to text data. Finding out how to convert text into numbers and how to use bag-of-words, TF-IDF, as well as embeddings and BERT.

Computer Vision 40h

Learning how to handle simple computer vision tasks using pre-made neural networks and the Keras library. Taking a quick look at deep learning.

Unsupervised Learning 20h

Figuring out what to do when you have no target features. Handling the clustering tasks and looking for anomalies.

Final Project 40h

Apply everything you’ve learned to a two-week intensive project that simulates the experience of working as a junior data scientist.

Career Acceleration Until you get hired


Develop your career skills with our career acceleration workshops led by our mentors and your career-success manager. 

Meet your career team

Your career mentor is extensively trained and specialises in research into industry recruiting and hiring. They will provide advice and assistance along the way.​


Craft your CV and optimise online profiles

You will be taught how to use the best strategies to write an excellent CV, and how to optimise your online profiles to meet the requirements of the market.​


Work opportunity sourcing

Based on strategies regularly tested by our graduates, your Career Team will assist you in recruiting and networking effectively.​


Interviewing essentials

We’ll teach you how to master your body language, perfect your presentation skills, and prepare answers to frequently as well as rarely asked questions.​


Master the art of Interviewing

Learn how technical interviews are structured and practice interviewing methods in a real-work environment.​


Storytelling using data

We’ll teach you how to identify the fundamental business questions and communicate your findings by presenting the impact of your analysis on the company’s trajectory.​


Comprehensive interview workshop

Experience in-depth mock interview sessions and apply your mentor’s feedback to enhance your competitive advantage during real interviews.​


Data-led business case studies

Learn from the world’s leading companies by solving real-work environment challenges, and analyse case studies in data-driven businesses.


Job offers and salary negotiation

Your career-success manager will help you with the process of negotiating better salary, compensation and benefits.

Your portfolio

Throughout the program, you will master the skills required to become a data professional  and build a portfolio of projects on topics such as these:

Predict traffic levels 

Train an algorithm that predicts the severity of daily traffic jams.

Weather affects taxi services

Suggest the probable causes of customer churn and test your hypotheses.

Courier services rush times

Train a courier service's algorithm to predict which time slots will be used on a given day.

Video games sales analysis

Help a game service identify the most popular trends.

Ad selection and display

If the community has multiple sponsors, you’ll want each user to see the ad they’re most likely to click on. Your algorithm will predict how likely each click is.

Real estate analysis

Determine the real estate market value in a city with a population of over one million.

Ready to build your career?